
Web-Technologies I 1

Web-Technologies

❒Chapters
❍Server-Side Programming:

Methods for creating dynamic
content

❍Web-Content-Management
❍Excurse: Server Apache
❍Client-Side Programming (Next

Lesson)
❍Web-Services (Next Lesson)
❍Search engines and Spiders (Next

Lesson)

Web-Technologies I 2

Server-Side Programming 1
❒ Introduction

❍ Server-Side Programming:
• User (Browser) requests a dynamic document
• Additional information is send to the server using GET or

POST
• Server parses the user-request and creates the document by

internal procedures
• On success, the document is send back to the user

❍ Several methods for servers to create a document:
• CGI
• SSI
• PHP
• ASP and others

Web-Technologies I 3

Server-Side Programming 2
❒ To Recall: Accessing a static page

❍ Typical access: URL = Protocol + Domainname or IP (+
Port) + Filename within the DocumentRoot

❍ Examples:
• http://www.uni-erlangen.de/index.html
• http://www.uni-erlangen.de:181/index.html

client network Webserver

URL
File

filesystem

URL filename

DataData

Web-Technologies I 4

Server-Side Programming 3
❒ (cont.) Accessing a static page

❍ DocumentRoot: „Starting point“ (path) within the
filesystem

❍ Data of a webpage consists out of:
• Header-Informations

– Examples:
„Content-type: text/html“
„Server: Apache/1.3.19 (Unix) PHP/4.0.4pl1“
„Title: Portal“
„Status: 200“
„Content_length: 6675“

• Body (Plain Text, HTML, XML, ...)

Web-Technologies I 5

Server-Side Programming 4
❒ CGI (Common Gateway Interface)

❍ Header-Info: Part of the header-information the
webserver sends. At least „Content-type“

❍ Output-Data: Output as defined within Content-Type.
❍ Data* = Header-Info + Output-Data

client Webserver

URL

Data
Process

Processpath +
ENVironment

Data*

Web-Technologies I 6

Server-Side Programming 5
❒ CGI (cont.)

❍ Process will be loaded and executed anew at every
access

❍ GET:
• Data will be transmitted as addition to the URL

– Example:
http://www.uni-erlangen.de/cgi-bin/webenv.pl?data=value

• Server will transform this into $ENV{‘QUERY_STRING’}
– Example: QUERY_STRING = “data=value”

❍ POST:
• Data will be transmitted to the script on <STDIN>
• Length of transmitted data: $ENV{‘CONTENT_LENGTH’}

❍ Special addition: Sending data on $ENV{‘PATH_INFO’},
e.g.:

• http://www.uni-erlangen.de/cgi-bin/webenv.pl/pathinfo?data=value

Web-Technologies I 7

Server-Side Programming 6
❒ CGI with User-Environment

❍ Reason: Security problems at webserver running as
special user (e.g. root !)

❍ Several moduls to solve this: CGIWrap, suEXEC, sBox
❍ Base idea: Script is executed by a user without admin-

rights

client Webserver with modul suEXEC

URL

Data

Process

Processpath +
ENV

Data*

ChangeRoot
Script:

New user =
UsernameData*

Processpath +
Username +
ENV

Web-Technologies I 8

Server-Side Programming 7
❒ CGI with User-Environment (cont.)

❍ CGIWrap: User CGI Access (http://cgiwrap.unixtools
.org)

• Allowing the execution of cgi-scripts from local user-homes
with http://www.DOMAIN.TLD/~login/cgi-bin/skript.cgi

• /~login/cgi-bin/ forces a redirect to a wrapper-script, that
executes the skript.cgi as user „login“.

❍ sBox: (Lincoln Stein, http://stein.cshl.org/software/
sbox/)

• CGIWrap + Configurable ceilings on script resource usage
(CPU, disk, memory and process usage, sets priority and
restrictions to ENV)

Web-Technologies I 9

Server-Side Programming 8
❒ CGI with User-Environment (cont.)

❍ suEXEC: Apache-modul (http://httpd.apache.org/docs/
suexec.html)

• Allows the execution of all CGI, SSI and PHP on a different
user ID

• Unlike Wrappers it is not bound to a special syntax in cgi-
directories

• Supports the use for virtual hosts

Web-Technologies I 10

Server-Side Programming 9
❒ SSI (Server Side Includes)

client

Webserver

File.shtml

filesystem

URL

Data

SSI-Parser

Read file

Content with
SSI

Content with
SSI

Content
without SSI

Web-Technologies I 11

Server-Side Programming 10
❒ SSI (cont.)

❍ SSI-Tags are parsed by the server
❍ SSI-Tags are parsed as long as there are no tags

anymore
❍ Examples:

• <!--#echo var=„DATE_LOCAL“--> will be replaced with the
string for the local time of the server

• <!--#include virtual=„filename.shtml“ --> will insert the
content of filename.shtml. filename.shtml can use SSI-Tags
too!
(Recursive includes of files will be detected.)

• <!--#include virtual=„/cgi-bin/skript.cgi?values“--> can be
used to execute scripts

❍ SSI-files mostly use the suffix „.shtml“
❍ SSI works together with suEXEC, but not with

CGIWrap or sBox

Web-Technologies I 12

Server-Side Programming 11
❒ SSI + CGI (without suEXEC)

Content with
SSI

client

Webserver
File.shtml

filesystem

URL

Data

SSI-Parser

Read file

Content with
SSI

Content
without SSI

Process

Processpath +
ENV

Data*

Web-Technologies I 13

Server-Side Programming 12

❒ SSI + CGI (cont.)
❍ Example SSI-file: index.shtml

❍ navigation.shtml

❍ German samples: http://cgi.xwolf.com/faq/ssi-sample1.shtml

<body>
<!--#include virtual=„navigation.shtml“-->
Hallo,

willkommen auf meiner Seite.

</body>

<hr>FAU
Web.de Zeit:
<!--#config timefmt=„%d.%m.%Y, %H.%M“-->
<!--#echo var=„DATE_LOCAL“--><hr>

Web-Technologies I 14

Server-Side Programming 13
❒ Embedded Scripts

❍ Recall: Normal CGI-processes will be loaded
and executed anew at every request.

❍ Embedded scripts keep already loaded scripts
in memory.

❍ Script-Interpreter is part of the webserver or
implemented as modul (like in Apache later
Version 1.3.12)

❍ Popular in use with PHP
❍ Also in use for Perl-CGI-scripts and Databases

Web-Technologies I 15

Server-Side Programming 14
❒ Embedded Scripts (cont.)

❍ First access by client1:

client1

URL

Data
(Modul)

Scriptmanagement and
-Interpreter

Interpreted
Script

Data*

Read File

Data* ENV

ENV +
Skriptpath

Webserver

Scriptfile

filesystem

Web-Technologies I 16

Server-Side Programming 15
❒ Embedded Scripts (cont.)

❍ Later access for clientX

clientX

URL

Data
(Modul)

Scriptmanagement and
-Interpreter

Interpreted
Script

Data*

Data* ENV

ENV +
Skriptpath

Webserver

Web-Technologies I 17

Web-Content-Management1
❒ Base Principle:

❍ Parting Content and Layout

+

#Titel#

#Bild#
#Text#

Layout

<Titel>
Martin Muster
</Titel>
<Bild>
mustermann.gif
</Bild>
<Text>
Bla..Bla..
</Text>

Content

=

Martin Muster

?Bla...

Bla...

Webpage

Web-Technologies I 18

Web-Content-Management2
❒ Content-Management is need at:

❍ Huge amount of information, gathered and created by
many people

❍ Information with references to many other information,
that might refer back: complex link-trees

❍ Information with a limited lifetime: Content-lifecycle
❒ Web-Content-Management

❍ Information = Content is presented within a given layout
to the public

❍ Clients are requesting all information from a webserver
❍ All techniques a webserver offers can be used by a web-

content-management

Web-Technologies I 19

Web-Content-Management3
❒ Web-Content-Management-Systems (WCMS) are

using several technics of server-side
programming:

❍ CGI
❍ SSI
❍ Embedded Scripts

❒ Basic aspects of WCMS are
❍ Management of content and layout
❍ Interaction with databases and/or special file formats
❍ Concepts for data management ins respect of Web-

Requests
❍ User-Management
❍ Workflow for content-lifecycle

Web-Technologies I 20

Web-Content-Management4
❒ Content lifecycle

Author
creates/edits

Content

Chief
Editor

controls
content

Content gets
archived

Publishing

Web-Technologies I 21

Web-Content-Management5
❒ Publishing-/Staging-Server

❍ Basic principle for client requests

HTML-
Files

client
Webserver

(Staging)

File

Filesystem
URL Read File

Data

Content

Database

Layouts
(HTML)

Filesystem

WCMS
(Publishing)

Read
File

Read
Data

Web-Technologies I 22

Web-Content-Management6
❒ Publishing-/Staging-Server (cont.)

❍ Editors view
(Client using a Webserver)

Client
(Editor)

Webserver

URL + Auth

Data

Content

Database

Layouts
(HTML)

Filesystem

WCMS

Edit
File

Read /
Store
Data

Data*

ENV + Auth

Web-Technologies I 23

Web-Content-Management7
❒ Publishing-/Staging-Server (cont.)

❍ On editor command or time interval, WCMS will dump
new HTML-files on Webserver‘s file system

❍ The use of WCMS with this principle is unseen by users
which are requesting web pages

❍ Files are secure against modifications on the webserver:
Dump of the WCMS will overwrite it

❍ Good performance due to static HTML-files on
webserver

❍ Supports backup (database of WCMS)
❍ Consistency-problems during file-dumping. Bad for pages

with many changes in short time
❍ Static pages are registered by internet search engines

Web-Technologies I 24

Web-Content-Management8
❒ Dynamic Publishing

client

URL

Data

Content

Database

Layouts
(HTML)

Filesystem

Webserver
(Dynamic Publishing)

Read
File

Read
Data

Web-Technologies I 25

Web-Content-Management9
❒ Dynamic Publishing (cont.)

❍ All data is created on-the-fly: No Static pages anymore!
❍ Changes in content or layout are published as soon as

they are accepted
❍ Local Search engines (database search) can be used to

get new data-output
❍ Output can get personalized for clients and/or

authentificated users
❍ Needs huge resources for server-hardware (CPU, disk,

memory and process usage)
❍ Problems with internet search engines: Mostly dynamic

pages arn‘t registered.

Web-Technologies I 26

Web-Content-Management10
❒ Publishing- /Staging and Extract-Concept

Webserver
(Staging)

File

Filesystem
Read File

Client
(Reader)

Data

URL + Auth

Client
(Editor)

Data

Data*

ENV + Auth

Meta-
Data

Database

Layouts
(HTML)

Filesystem

Read
File

Read/
Edit
Meta-
data

Publishing

Extracting

WCMS

Web-Technologies I 27

Web-Content-Management11
❒ Publishing- /Staging and Extract-Concept (cont.)

❍ Good performance due to static HTML-Files
❍ Supports files with many content-refreshes
❍ Allows import of existing files
❍ Allows the use of other WCMS and Webeditors (!)
❍ Problems at change for Layout of many files

❒ Other concepts
❍ Combinations of the methods above
❍ Dynamic publishing with caching: Dumpout of few HTML-

files that are requested often

Web-Technologies I 28

Excurse Apache 1

❒ Apache („a patchy server“)
❍ Free HTTP server, supports HTTP/1.1 (RFC2616)
❍ Useable on nearly all OS (but not Mac)
❍ Build upon NCSA httpd (V1.3) since 1994. First release

of Apache: April 1995, V 0.6.2 as beta
❍ First public version in December 1, 1995
❍ Developer-Team consists out of volunteers – open source

project
❍ Today the #1 webserver on the internet
❍ Current version (Jul 2001): 1.3.20 as final and 2.0.18 as

beta
❍ http://www.apache.org

Web-Technologies I 29

Excurse Apache 2

❒ Apache (cont.)
❍ Currently used by appr. 56% of all servers in use.

(MS-IIS: 31%, Netscape-Enterprise/iPlanet: 2%)
❍ 37,574,105 sites tested

http://www.netcraft.com/survey

Web-Technologies I 30

Excurse Apache 3

❒ Principle:
❍ After start Apache will listen to requests onto port 80

(or any other defined port)
❍ Configuration is stored within a textfile „httpd.conf“,

which is read by the httpd-process
❍ On a request it will fork itself;
❍ The child-process will answer the request, close the

connection and then die
• Before sending an answer, the process will parse the

requesting URL and look it up for errors.
• If the request aims a special filetype (like a server-parsed

SSI-document), needed moduls are dynamically loaded or
called

Web-Technologies I 31

Excurse Apache 4

❒ Sample configuration file (extract)

Listen 131.188.3.67:80
ServerName www.rrze.uni-erlangen.de
User www
Group www
PidFile logs/httpd.pid
ServerRoot /usr/local/apache
MaxClients 220
...
LoadModule vhost_alias_module libexec/mod_vhost_alias.so
...
AddModule mod_vhost_alias.c
...

Web-Technologies I 32

Excurse Apache 5

❒ Sample configuration file (cont.)

...
NameVirtualHost 131.188.3.67

<Virtualhost 131.188.3.67>
ServerName www.techfak.uni-erlangen.de
User www
Group www
DocumentRoot /proj/websource/tf/www.techfak.uni-erlangen.de
ScriptAlias /cgi-bin/ /proj/webbin/www.techfak.uni-erlangen.de/
</VirtualHost>
...

